\(A=n^7-14n^5+49n^3-36n=\left(n^3+1\right)\left(n^3-1\right).n+7\left(-2n^5+7n^3-5n\right)\)
Xét các số dư của n khi chia cho 7.
Xét mod 7:
+n ≡ 0 => n⋮ 7 => n(n3+1)(n3-1)⋮7 => A⋮7
+n ≡ 1; 2; 4; => n3 ≡ 1 => n3-1 ≡ 0 => n3-1⋮7 => n(n3+1)(n3-1)⋮7 => A⋮7
+n ≡ 3; 5; 6 => n3 ≡ 6 => n3 + 1 ≡ 0 => n3 + 1 ⋮7 => n(n3+1)(n3-1)⋮7 => A⋮7
Vậy A luôn chia hết cho 7.