cmr (a+b+c)^2 = a^2+b^2+c^2+2ab+2ac+2bc
cmr ( a+b+c)^2= a^2+b^2+c^2+2ab+2ac+2bc
cho a,b,c là 3 cạnh của 1 tam giác
CMR a^2 + b^2 + c^2 < 2ab + 2bc + 2ac
cho a+b+c=0.cmr ab+2ac-abc+bc-\(a^2c-ac^2=-a^2-c^2\)
CMR a^2+b^2 > 2ab hoặc = với mọi a,b. Từ đó suy ra rằng mọi a,b,c thì a^2+b^2+c^2 > hoặc = ab+bc+ca
Ta có: a^2 + b^2 + c^2 = ab + bc + ca
<=> 2.a^2 + 2.b^2 + 2.c^2 = 2.ab + 2.bc + 2.ca
<=> ( a^2 - 2ab + b^2 ) + ( b^2 - 2bc +c^2 ) + ( c^2 - 2ac + a^2 ) =0
<=> (a-b)^2 + (b-c)^2 + (c -a)^2 =0 (1)
Vì (a-b)^2 ; (b-c)^2 ; (c -a)^2 ≧ 0 với mọi a,b,c.
=> (a-b)^2 + (b-c)^2 + (c -a)^2 ≧ 0 (2)
Từ (1) và (2) khẳng định dấu "=" khi:
a - b = 0; b - c = 0 ; c - a = 0 => a=b=c
Vậy a=b=c.
abc là độ đo 3 cạnh của tam giác . cm a^2+b^2+c^2 <2ab+2ac+2bc
abc là độ đo 3 cạnh của tam giác . cm a2+b2+c2<2ab+2bc+2ac
cho tỉ lệ thức a/b=c/d CMR a2/b2=3a2-2ac