Lời giải:
$27\equiv 1\pmod {13}$
$\Rightarrow 27^{12}\equiv 1^{12}\equiv 1\pmod {13}(1)$
$43\equiv 4\pmod {13}\Rightarrow 43^7\equiv 4^7\pmod {13}(2)$
$9\equiv -4\pmod {13}\Rightarrow 9^{17}\equiv (-4)^{17}\pmod {13}(3)$
Từ $(1); (2); (3)\Rightarrow 27^{12}+43^7+9^{17}\equiv 1+4^7+(-4)^{17}$
$\equiv 1+4^7(1-4^{10})\pmod {13}$
Mà:
$4^3\equiv -1\pmod {13}$
$\Rightarrow 4^7=(4^3)^2.4\equiv (-1)^2.4\equiv 4\pmod {13}$
$4^{10}=(4^3)^3.4\equiv (-1)^3.4\equiv -4\pmod {13}$
$\Rightarrow 27^{12}+43^7+9^{17}\equiv 1+4^7(1-4^{10})\equiv 1+4(1--4)\equiv 21\equiv 8\pmod {13}$
Tức là tổng trên không chia hết cho 13 bạn nhé.