Ta có
\(2017^{2017}=\left(2017^{2016}\right).2017=\left(...1\right).2017=\left(...7\right)\)
\(2013^{2013}=\left(2013^{2012}\right).2013=\left(...1\right).2013=\left(...3\right)\)
\(\Rightarrow2013^{2013}+2017^{2017}=\left(...3\right)+\left(...7\right)=\left(...0\right)⋮10\)
\(2013^{2013}+2017^{2017}\)
Ta có:
\(2013^{2013}=\left(2013^{2012}\right).2013=\overline{...1}.2013=\overline{...3}\)
\(2017^{2017}=\left(2017^{2016}\right).2017=\overline{...1}.2017=\overline{...3}\)
\(\Rightarrow2013^{2013}+2017^{2017}=\overline{...3}+\overline{...7}=\overline{...0}⋮10\)
\(\Rightarrow2013^{2013}+2017^{2017}⋮10\)