Ta có \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}>0\)
=> \(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}>1\) (1)
Ta lại có \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)
< \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
< \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
< \(1-\frac{1}{100}< 1\)
=> \(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)\(< 1+1\)
=> \(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)\(< 2\) (2)
Từ (1) và (2) => \(1< 1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< 2\)
=> \(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)không là số tự nhiên