Nếu n = 2k ( k Z+) thì
19.82k + 17 = 18.82k + ( 1 + 63)k +( 18 – 1) đồng dư với 0 theo mod3
Nếu n = 4k + 1 thì
19.84k+1 + 17 = 13.84k+1 + 6.8.642k + 17 = 13.84k+1+ 39.642k + 9(1 – 65)2k + (13+4) đồng dư với 0 (mod13)
Nếu n = 4k + 3 thì
19.84k+3 + 17 = 15.84k+3 + 4.83.642k + 17
= 15.84k+3 + 4.510.642k + 4.2.(1 – 65)2k + (25 – 8) đồng dư với 0(mod5)
Như vậy với mọi n Z+ số 19.8n + 17 là hợp số