Lời giải:
Ta có:
$1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{49}-\frac{1}{50}$
$=(1+\frac{1}{3}+\frac{1}{5}+....+\frac{1}{49})-(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50})$
$=(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+....+\frac{1}{49}+\frac{1}{50})-2(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50})$
$=(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+....+\frac{1}{49}+\frac{1}{50})-(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{25})$
$=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}$