CM:
1+\(\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3...n}< 2\)
Tính :
\(A=\left(1-\frac{1}{1.2}\right)\left(1-\frac{1}{1.2.3}\right)\left(1-\frac{1}{1.2.3.4}\right)...\left(1-\frac{1}{1.2.3.4.....1986}\right)\)
Chứng mih rằng
1+\(\frac{1}{1.2}\)+\(\frac{1}{1.2.3}\)+\(\frac{1}{1.2.3.4}\)+.......+\(\frac{1}{1.2.3.....n}\)< 2
Các bạn giải hộ mik nhà !!! Cảm ơn nhiều
Tìm x: \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+..+\frac{1}{98.99.100}-3x=\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+..+\frac{1}{27.28.29.30}\)
\(F=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}=\frac{n-1}{n}\)
\(G=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{\left(n-1\right)\left(n-1\right).n}=\)
\(H=2+4+6+..+2n=\)
Cho n!=1.2.3....n,đọc là n giai thừa.Chứng minh rằng:
a.\(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+....+\frac{99}{100!}< \)\(1\)
b.\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+....+\frac{99.100-1}{100!}< 2\)
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}=\frac{1}{k}.\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\).Số k trong đẳng thức trên có giá trị là ......
Bày cách làm giùm mình nha !
Cho \(A=1.2.3...2018\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)\).CMR: \(A⋮2019\)
CMR:
\(\frac{1}{1.2.3}+\frac{1}{2.3.\text{4}}+\frac{1}{3.\text{4}.5}+...+\frac{1}{98.99.100}=\frac{\text{4}9\text{4}9}{19800}\)