gọi d là UCLN của (2n+1.2n^2-1)
\(\hept{\begin{cases}2n+1⋮d\\2n^2-1⋮d\end{cases}\Rightarrow\hept{\begin{cases}n.\left(2n+1\right)⋮d\\2n^2-1⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2n^2+n⋮d\\2n^2-1⋮d\end{cases}}}\)
\(\hept{\begin{cases}1⋮d\\n⋮d\end{cases}\Rightarrow UCLN\left(1,n\right)=1}\)
Vậy p/s sau tối giãn
p/s: lúc tr lớp 6 đi thi gặp bài này dell làm đc ngồi chửi ông ra đề_bây h mới bt bài này lớp 8
Gọi \(ƯC\left(2n+1;2n^2-1\right)=d\left(d\in N\right)\)
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\2n^2-1⋮d\end{cases}\Rightarrow\hept{\begin{cases}n\left(2n+1\right)⋮d\\2n^2-1⋮d\end{cases}\Rightarrow}}\hept{\begin{cases}2n^2+n⋮d\\2n^2-1⋮d\end{cases}}\)
\(\Rightarrow\left(2n^2+n\right)-\left(2n^2-1\right)⋮d\)
\(\Rightarrow n+1⋮d\)
Mà \(2n+1⋮d\)
Do đó: \(2\left(n+1\right)-\left(2n+1\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
Ước chung của tử và mẫu là 1 nên \(\frac{2n+1}{2n^2-1}\) là p/s tối giản
eei cho sửa đoạn này
\(\left(2n^2+n\right)-\left(2n^2-1\right)⋮d\Rightarrow n+1⋮d\)
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\2.\left(n+1\right)⋮d\end{cases}\Rightarrow2n+2-2n+1⋮d\Rightarrow1⋮d\Rightarrow d=1}\)(vì n thuộc N)
Vậy ..... tự kết luận