Hướng dẫn giải:
Gọi d là ƯCLN của 2n + 1 và 2 n 2 - 1
⇒ (2n +1)⋮ d và ( 2 n 2 - 1 ) ⋮ d
⇒ [ n ( 2 n + 1 ) - ( 2 n 2 - 1 ) ] = n + 1 ⋮ d
⇒ 2(n + 1) ⋮ d ⇒ (2n + 2) – (2n + 1) = 1 ⋮ d
⇒ d = 1 hoặc d = -1
Vậy phân thức đã cho tối giản với ∀n ∈ N
Hướng dẫn giải:
Gọi d là ƯCLN của 2n + 1 và 2 n 2 - 1
⇒ (2n +1)⋮ d và ( 2 n 2 - 1 ) ⋮ d
⇒ [ n ( 2 n + 1 ) - ( 2 n 2 - 1 ) ] = n + 1 ⋮ d
⇒ 2(n + 1) ⋮ d ⇒ (2n + 2) – (2n + 1) = 1 ⋮ d
⇒ d = 1 hoặc d = -1
Vậy phân thức đã cho tối giản với ∀n ∈ N
Chứng minh phân thức 12 n + 1 30 n + 2 là tối giản với mọi số tự nhiên n
Chứng minh phân thức 2 n - 1 4 n 2 - 2 là tối giản với mọi số tự nhiên n
Chứng minh phân thức 3 n - 2 4 n - 3 là tối giản với mọi số tự nhiên n
Chứng minh phân thức 3 n - 2 4 n - 3 là tối giản với mọi số tự nhiên n
Chứng minh phân thức 7 n - 5 3 n - 2 là tối giản với mọi số tự nhiên n
Chứng minh phân thức 3 n 3 n + 1 là tối giản với mọi số tự nhiên n
Chứng minh phân thức sau tối giản với mọi số tự nhiên n: \(\frac{3n^2+5n+1}{8n^2+7n+1}\)
Chứng minh phân số sau tối giản với mọi n là số tự nhiên:
(n2+2):5
Chứng minh rằng với mọi số tự nhiên n thì phân số \(\frac{n^3+2n}{n^4+3n^2+1}\) là phân số tối giản.