Can them dieu kien a;b;c>0 nhe
Theo BDT Cauchy-Schwarz ta co
\(\left(a+b+c\right)\left(\dfrac{x^2}{a}+\dfrac{y^2}{b}+\dfrac{z^2}{c}\right)\ge\left(x+y+z\right)^2\)
\(\Leftrightarrow\dfrac{x^2}{a}+\dfrac{y^2}{b}+\dfrac{z^2}{c}\ge\dfrac{\left(x+y+z\right)^2}{a+b+c}\)
Dau "=" xay ra khi \(\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}\Leftrightarrow\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\)
(a+b+c)(x2a+y2b+z2c)≥(x+y+z)2
⇔x2a+y2b+z2c≥(x+y+z)2a+b+c
Dấu "=" xay ra khi