a) \(x^2-5x+8=\left(x^2-5x+6,25\right)+1,75=\left(x-2,5\right)^2+1,75\ge1,75>0\rightarrowđpcm\)
b) \(-4x^2-4x-2=-\left(4x^2+4x+1\right)-1=-\left(2x+1\right)^2-1\le-1< 0\rightarrowđpcm\)
A =x2 -5x +8 >0 với mọi x
= x2-5x+\(\dfrac{25}{4}+\dfrac{7}{4}\)
=\(\left(x-\dfrac{5}{2}\right)^2+\dfrac{7}{4}\)
do \(\left(x-\dfrac{5}{2}\right)^2\ge0\forall x\)
=> \(\left(x-\dfrac{5}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)
=> A luôn lớn hơn 0 vs mọi x
B= -4x2 -4x-2 < 0 với mọi x
=-(4x2+4x+2)
=-4x2-4x-1-1
=-\(\left(4x^2+4x+1+1\right)\)
=-\(\left[4\left(x^2+x+\dfrac{1}{4}\right)+1\right]\)
= -\(\left[4\left(x+\dfrac{1}{2}\right)^2+1\right]\)
=-4\(\left(x+\dfrac{1}{2}\right)^2-1\)
do \(\left(x+\dfrac{1}{2}\right)^2\ge0\forall x\)
=> -4 \(\left(x+\dfrac{1}{2}\right)^2\le0\)
=> \(-4\left(x+\dfrac{1}{2}\right)^2-1\le-1\)
vậy B luôn nhỏ hơn 0 vs mọi x