n4 +6n3 + 11n2 + 6n
= n ( n3 + 2n2 + 4n2 + 8n + 3n + 6)
= n (n+2)(n2 + 4n + 3)
=n(n+2)(n+1)(n+3) là tích 4 số tự nhiên liên tiếp nên chia hết cho 8 và 3.
Mà (3;8) = 1 => n4 +6n3 + 11n2 + 6n chia hết cho 24
Ta có :
\(n^4+6n^3+11n^2+6n\)
\(=n^4+2n^3+4n^3+8n^2+3n^2+6n\)
\(=n^3\left(n+2\right)+4n^2\left(n+2\right)+3n\left(n+2\right)\)
\(=\left(n+2\right)\left(n^3+4n^2+3n\right)\)
\(=\left(n+2\right)\left(n^3+n^2+3n^2+3n\right)\)
\(=\left(n+2\right)\left[n^2\left(n+1\right)+3n\left(n+1\right)\right]\)
\(=\left(n+2\right)\left(n+1\right)\left(n^2+3n\right)\)
\(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
Vì \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)là tích của 4 số tự nhiên liên tiếp .
Nên \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮24\)
\(\Rightarrow n^4+6n^3+11n^2+6n⋮24\) ( đpcm )