Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Qúy Vô Song

C/m tồn tại 1 số tự nhiên k sao cho 3^k có tận cùng bằng 001

KAl(SO4)2·12H2O
22 tháng 1 2018 lúc 23:25

Áp dụng nguyên lý Di-rich-le, ta có:

Gọi các số: 3, 32, ..., 31001. Theo nguyên lý Di-rich-le luôn luôn tồn tại 2 số trong 1001 số trên khi chia cho 1000 có cùng số dư.

Gỉa sử hai số: 3m, 3n trong đó \(1\le n\le m\le1001\)

\(\Rightarrow3^m-3^n⋮1000\)

\(\Rightarrow3^n.\left(3^{m-n}-1\right)⋮1000\)

Vì 3n không chia hết cho 1000 nên => \(3^{m-n}-1⋮1000\)

\(\Rightarrow3^{m-n}-1=100k\left(k\in N\cdot\right)\)

\(\Rightarrow3^{m-n}=1000k+1\)

=> 3m - n có tận cùng là 001

=> ĐPCM

©ⓢ丶κεη春╰‿╯
24 tháng 1 2018 lúc 13:08

Áp dụng nguyên lý Di-rich-le, ta có:
Gọi các số: 3, 32, ..., 31001. Theo nguyên lý Di-rich-le luôn luôn tồn tại 2 số trong 1001 số trên khi chia cho 1000 có cùng số dư.
Gỉa sử hai số: 3m, 3n
 trong đó 1 ≤ n ≤ m ≤ 1001
⇒3m − 3n⋮1000
⇒3n. 3m−n − 1 ⋮1000
Vì 3n không chia hết cho 1000 nên => 3
m−n − 1⋮1000
⇒3m−n − 1 = 100k k ∈ N ·
⇒3m−n = 1000k + 1
=> 3m - n
 có tận cùng là 001
=> ĐPCM

p/s : kham khảo


Các câu hỏi tương tự
tth_new
Xem chi tiết
Nguyen Hai Dang
Xem chi tiết
Puca
Xem chi tiết
đinh thị bảo ngọc
Xem chi tiết
Truong Thi Thu Ha
Xem chi tiết
Nguyễn Thị Lệ
Xem chi tiết
One piece
Xem chi tiết
Phạm Nguyễn Ngọc Khánh
Xem chi tiết
Phạm Nguyễn Ngọc Khánh
Xem chi tiết