CMR :
\(\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+\frac{1}{100}\)
A = \(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\) . Chứng minh : \(\frac{7}{12}< A< \frac{5}{6}\)
\(CMR:\) \(1-\frac{1}{2}+\frac{1}{3}-...+\frac{1}{99}-\frac{1}{100}=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)\(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
Cho S=\(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
a) S =\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
b) \(\frac{7}{12}< S< \frac{5}{6}\)
A=\(\frac{\frac{1}{9}-\frac{1}{6}-\frac{1}{51}}{\frac{1}{8}-\frac{1}{52}+\frac{1}{68}}:5\frac{1}{6}\)tính A
Cho A=\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100},CMR:\frac{3}{5}< A< \frac{31}{40}\)
\(cmr;\frac{1}{1\times2}+\frac{1}{3\times4}+\frac{1}{5\times6}+.....+\frac{1}{99\times100}=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+.....+\frac{1}{100}\)
ai làm đung mình tick cho
tính tổng A=\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}\)
Cho A = \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
CMR:
1, A = \(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}\)
2, \(\frac{25}{75}+\frac{25}{100}< A< \frac{25}{51}+\frac{25}{75}\)