Ta có: \(\left(a^5+b^5\right)\left(a+b\right)\ge\left(a^4+b^4\right)\left(a^2+b^2\right)\)
\(\Leftrightarrow\left(a^6+ab^5+b^6+a^5b\right)\ge a^6+a^2b^4+a^4b^2+b^6\)
\(\Leftrightarrow ab^5+a^5b-a^2b^4-a^4b^2\ge0\)
\(\Leftrightarrow ab\left(b^4+a^4-ab^3-a^3b^3\right)\ge0\)
\(\Leftrightarrow a^4+b^4-ab^3-a^3b\ge0\left(Vì:ab>0\right)\)
\(\Leftrightarrow\left(a^4-a^3b\right)+\left(b^4-ab^3\right)\ge0\)
\(a^3\left(a-b\right)+b^3\left(b-a\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\left(luôn-đúng\forall a,b\right)\)
Vì: \(\left(a-b\right)^2\ge0\forall a,b\)
\(a^2ab+b^2=a^2+ab+\frac{b^2}{4}+\frac{3}{4}b^2\)
\(=\left(a+\frac{b}{2}\right)^2+\frac{3}{4}b^2\ge0\forall a,b\)
Từ trên ta suy ra: \(\left(a^5+b^5\right)\left(a+b\right)\ge\left(a^4+b^4\right)\left(a^2+b^2\right)vớiab>0\left(đpcm\right)\)
a) Áp dụng BĐT AM-GM:
\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc=VP\)
Vậy ta có đpcm.