Cho a+b+c=0, cm a)a^3+b^3+c^3=3abc
b) a^2+b^2+c^2=2(a^4+b^4+c^4)
CM BĐT (a+b)(a^3+b^3)=< 2(a^4+b^4)
a+b=a3+b3=1.Cm a2+b2=a4+b4
1. CM: \(3\left(a^2+b^2\right)-ab+4\ge2\left(a\sqrt{b^2+1}+b\sqrt{a^2+1}\right)\)
2. CMR: \(a^4+b^4+c^4+1\ge2a\left(ab^2-a+c+1\right)\)
3. Cm: \(\left(a^5+b^5\right)\left(a+b\right)\ge\left(a^4+b^4\right)\left(a+b\right)\)
Bài 1:
a) x3+y3+z3 = xy+yz+xz. Cm: x=y=z.
b) (x+y+z)3 = 3(xy+yz+xz). Cm: x=y=z.
Bài 2:
a) Cho a+b+c=0. Cm: (a2+b2+c2)2 = 2(a4+b4+c4).
b) Cho (a2+b2)(x2+y2) = (ax+by)2. Cm: ay = bx (x,y khác 0)
Cho:a,b thuộc R. CM: 2(a^4 + b^4) >= ab^3 + a^3b + 2a^2b^2
Cho a,b,c>0. CM: \(\frac{a^4+b^4+c^4}{ab+bc+ca}+\frac{3abc}{a+b+c}\ge\frac{2}{3}.\left(a^2+b^2+c^2\right)\)
1)CM \(a^4\)+ \(b^4\)>= \(a^3+b^3\)
biết a+b=2
2)CM (a+1)(b+1)(c+1)>= 8
biết abc=1
a^4+a^3*b+b^4+a*b^3. cm >=0. giúp mình với