Cách 1:
\(\frac{1}{ab+a+2}=\frac{1}{\left(ab+1\right)+\left(a+1\right)}\le\frac{1}{4}\left(\frac{1}{ab+1}+\frac{1}{a+1}\right)=\frac{1}{4}\left(\frac{c}{c+1}+\frac{1}{a+1}\right)\)
Tương tự:\(\frac{1}{bc+b+2}\le\frac{1}{4}\left(\frac{a}{a+1}+\frac{1}{b+1}\right);\frac{1}{ac+c+2}\le\frac{1}{4}\left(\frac{b}{b+1}+\frac{1}{c+1}\right)\)
Tương tự cộng vế theo vế có đpcm
Cách 2:
Áp dụng Cauchy Schwarz ta dễ có:
\(\frac{1}{ab+a+2}=\frac{1}{\left(ab+a+1\right)+1}\le\frac{1}{16}\left(\frac{3^2}{ab+a+1}+\frac{1}{1}\right)=\frac{1}{16}\left(\frac{9}{ab+a+1}+1\right)\)
Tương tự:
\(\frac{1}{bc+b+2}\le\frac{1}{16}\left(\frac{9}{bc+b+1}+1\right);\frac{1}{ca+c+2}\le\frac{1}{16}\left(\frac{9}{ca+c+1}+1\right)\)
Cộng lại:
\(LHS\le\frac{9}{16}\left(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\right)+\frac{3}{16}\)
Mà \(abc=1\) nên theo bổ đề quen thuộc ta có được đẳng thức sau luôn đúng:
\(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}=1\)
Khi đó ta có được đpcm
Vừa nghĩ ra cách này khá là oke gửi đến các bạn :))
Nháp:
Ta đặt \(\left(a;b;c\right)\rightarrow\left(\frac{u}{v};\frac{v}{w};\frac{w}{u}\right)\) thì ta có được:
\(\frac{1}{ab+a+2}=\frac{1}{\frac{u}{v}\cdot\frac{v}{w}+\frac{u}{v}+2}=\frac{vw}{uv+uw+2vw}\) đến đây ta chưa được gì cả nên nghĩ đến hướng đi khác
Để ý rằng ta làm tử và mẫu khử nhau rồi tạo ra phân thức mới rồi nhân ngược lên ta được tử số có 2 thừa số nhân lại với nhau
Ta cần tạo ra ít mẫu nhất có thể để bớt sự phức tạp. Mà ta lại có:
\(\frac{1}{ab+a+2}=\frac{1}{\frac{u}{v}\cdot\frac{w}{u}+\frac{u}{v}+2}=\frac{v}{w+u+2v}\)
Đến đây rõ ràng đã bớt sự phức tạp. Khi đó ta có lời giải như sau:
Đặt \(\left(a;b;c\right)\rightarrow\left(\frac{u}{v};\frac{w}{u};\frac{v}{w}\right)\)
Ta có được
\(LHS=\frac{v}{w+u+2v}+\frac{w}{u+v+2w}+\frac{u}{v+w+2u}\)
\(=3-\left(\frac{u+v+w}{w+u+2v}+\frac{u+v+w}{u+v+2w}+\frac{u+v+w}{v+w+2u}\right)\)
\(=3-\left(u+v+w\right)\left(\frac{1}{u+w+2v}+\frac{1}{u+v+2w}+\frac{1}{v+w+2u}\right)\)
\(\le3-\left(u+v+w\right)\cdot\frac{9}{4\left(u+v+w\right)}=\frac{3}{4}\)
Đẳng thức xảy ra tại a=b=c=1
\(S=\frac{1}{\frac{1}{c}+a+2}+\frac{1}{\frac{1}{a}+b+2}+\frac{1}{\frac{1}{b}+c+2}\)
Áp dụng svacxo suy ra \(4S\le\frac{1}{\frac{1}{c}+1}+\frac{1}{a+1}+...=3\)Dấu bằng xảy ra khi a=b=c=1