\(A=1+3+3^2+3^3+...+3^{99}\)
\(=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{98}+3^{99}\right)\)
\(=4+3^2.\left(1+3\right)+...+3^{98}.\left(1+3\right)\)
\(=4+3^2.4+...+3^{98}.4\)
\(=4.\left(1+3^2+...+3^{98}\right)\) chia hết cho 4
=> A chia hết cho 4 (đpcm).
= 1+3+32+33+..........+399+3100
=(1+3)+(32+33+...........+399+3100)
=3100-4 chia het cho 4