x2 - 6x + 10
= x2 - 2.x.3 + 32 + 1
= ( x - 3 )2 + 1
Vì \(\left(x-3\right)^2\ge0\forall x\)
1 > 0
=> \(\left(x-3\right)^2+1\ge0\forall x\) ( đpcm )
Study well
Ta có: x2 – 6x + 10 = x2 – 2.x.3 + 9 + 1 = (x – 3)2 + 1
Vì (x – 3)2 ≥ 0 với mọi x nên (x – 3)2 + 1 > 0 mọi x
Vậy x2 – 6x + 10 > 0 với mọi x.
Ta có: \(x^2-6x+10=x^2-2.x.3+9+1\)
\(=\left(x-3\right)^2+1\)
Vì: \(\left(x-3\right)^2\ge0\)\(\forall x\)
Nên \(\left(x-3\right)^2+1\ge1>0\)\(\forall x\)
\(\Rightarrowđpcm\)