Chứng minh rằng: B= \(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}<\frac{5}{6}\)
Chứng tỏ rằng: \(\frac{1}{1}\times\frac{1}{3}\times\frac{1}{5}\times.....\times\frac{1}{99}=\frac{2}{51}\times\frac{2}{52}\times\frac{2}{53}\times.....\times\frac{2}{100}\)
Chứng minh rằng \(\frac{7}{12}<\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{40}<\frac{5}{6}\)
Chứng minh rằng:
(1+\(\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\))-(\(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\))=\(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)
Chứng minh rằng :
\(\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+\frac{1}{54}+...+\frac{1}{100}\)
Chứng minh rằng :\(\frac{1}{1\times2}+\frac{1}{3\times4}+\frac{1}{5\times6}+...+\frac{1}{99\times100}=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)
chứng minh rằng \(\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
Cho phân số :\(\frac{a}{b}\)=\(\frac{1}{50}+\frac{1}{51}+\frac{1}{52}+....+\frac{1}{98}+\frac{1}{99}\)
CHỨNG TỎ RẰNG : a\(⋮\)149
Cho \(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+....\frac{1}{99.100}.\)Chứng minh rằng:
a.\(A=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+....+\frac{1}{100}.\)
b.\(\frac{7}{12}< A< \frac{5}{6}.\)