a)đặt B=1/2.3+1/3.4+...+1/99.100
=1/1.2+1/2.3+1/3.4+...+1/99.100
=1-1/2+1/2-1/3+...+1/99-1/100
=1-1/100<1 (1)
Mà 1<2(2)
A =1/1+1/2.2+1/3.3+...+1/100.100<1-1/2+1/2-1/3+...+1/99-1/100 (3)
từ (1),(2),(3) =>A<2
b,c tự làm
a) \(\frac{1}{2.2}<\frac{1}{1.2}\)
\(\frac{1}{3.3}<\frac{1}{2.3}\)
....
\(\frac{1}{100.100}<\frac{1}{99.100}\)
=> \(\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{100^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
->\(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}<1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
=> A < 2- \(\frac{1}{100}\)
-> A < 2- \(\frac{1}{100}<2\)
--> A <2
\(\frac{1}{20}>\frac{1}{21}\)
\(\frac{1}{20}>\frac{1}{22}\)
...
\(\frac{1}{20}>\frac{1}{40}\)
==> \(\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}>\frac{1}{21}+\frac{1}{22}+...+\frac{1}{40}\)
---> \(\frac{20}{20}>B\)
-->1 >B
ta có
\(\frac{1}{21}<\frac{1}{40}\)
\(\frac{1}{22}<\frac{1}{40}\)
....
\(\frac{1}{40}=\frac{1}{40}\)
--> \(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{40}<\frac{20}{40}\)
--> B \(<\frac{1}{2}\)
Vay 1/2 < B < 1