a,
ta có
\(12^{1980}-2^{1600}=\left( 12^4\right)^{495}-\left(2^4\right)^{400}=\left(...6\right)^{495}-\left(...6\right)^{400}=\left(...6\right)-\left(...6\right)=\left(...0\right)\)
có tận cùng bằng 0 nên \(\left(12^{1980}-2^{1600}\right)\)chia hết cho 10
Bài giải
\(a,\text{ }12^{1980}-2^{1600}=\left(3\cdot2^2\right)^{1980}-\left(2^4\right)^{400}=3^{1980}\cdot2^{3960}-216^{400}\)
\(=\left(3^4\right)^{495}\cdot\left(2^4\right)^{990}-216^{40}=\overline{\left(...1\right)}^{495}\cdot\overline{\left(...6\right)}^{990}-\overline{\left(...6\right)}^{495}=\overline{\left(...1\right)}\cdot\overline{\left(...6\right)}-\overline{\left(...6\right)}\)
\(=\overline{\left(...6\right)}-\overline{\left(...6\right)}=\overline{\left(...0\right)}\text{ }\)
Vì số có chữ số tận cùng là 0 thì chia hết cho 10 \(\Rightarrow\text{ }\left(12^{1980}-2^{1600}\right)\text{ }⋮\text{ }10\)
Bài giải
\(b,\text{ }\left(19^{2005}-11^{2006}\right)=19^{2004}\cdot19-11^{2006}=\left(19^2\right)^{1002}\cdot19-11^{2006}\)
\(=\overline{\left(...1\right)}^{1002}\cdot19-\overline{\left(...1\right)}^{2006}=\overline{\left(...9\right)}-\overline{\left(...1\right)}=\overline{\left(...8\right)}\text{ }⋮̸\text{ }10\)
\(\Rightarrow\text{ Vô lí}\)
Bài giải
a, Ta có :
\(12^{1980}-2^{1600}=\left(3\cdot2^2\right)^{1980}-\left(2^4\right)^{400}=3^{1980}\cdot2^{3960}-216^{400}\)
\(=\left(3^4\right)^{495}\cdot\left(2^4\right)^{990}-216^{40}=\overline{\left(...1\right)}^{495}\cdot\overline{\left(...6\right)}^{990}-\overline{\left(...6\right)}^{495}=\overline{\left(...1\right)}\cdot\overline{\left(...6\right)}-\overline{\left(...6\right)}\)
\(=\overline{\left(...6\right)}-\overline{\left(...6\right)}=\overline{\left(...0\right)}\text{ }\)
Vì số có chữ số tận cùng là 0 thì chia hết cho 10 \(\Rightarrow\text{ }\left(12^{1980}-2^{1600}\right)\text{ }⋮\text{ }10\)