Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Dương Thị Huyền Thục

Chứng tỏ rằng với mọi số tự nhiên n, hai số n+2 và 2n+3 là hai số nguyên tố cùng nhau

zZzNguyễnLêQuanAnhzZz
27 tháng 12 2016 lúc 17:29

Gọi d là Ước chung lớn nhất của chúng ta có

n+2 chia hết cho d 

2n+3 chia hết cho d

=>n+2-2n+3 chia hết cho d

=>2(n+2)-2n+3 chia hết cho d 

=>2n+4-2n+3 chia hết cho d

=>1 chia hết cho d 

=> d=1

Vậy ước chung của 2 số trên là 1 nên 2 số đó là 2 số nguyên tố cùng nhau

Đinh Đức Hùng
27 tháng 12 2016 lúc 17:29

Gọi d là ƯC (n + 2; 2n + 3) ( d ∈ N ) Nên ta có :

n + 2 ⋮ d và 2n + 3 ⋮ d

<=> 2(n + 2) ⋮ d và 1(2n + 3) ⋮ d

<=> 2n + 4 ⋮ d và 2n + 4 ⋮ d

=> (2n + 4) - (2n + 3) ⋮ d

=> 1 ⋮ d => d = 1

Vì ƯC ( n + 2 ; 2n + 3 ) = 1 => n + 2 và 2n + 3 là nguyên tố cùng nhau

Trần Thảo Vân
27 tháng 12 2016 lúc 18:56

Gọi d là ƯCLN (n + 2 ; 2n + 3)

\(\Rightarrow\hept{\begin{cases}n+2⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+2\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+4⋮d\\2n+3⋮d\end{cases}}}\)

\(\Rightarrow2n+4-\left(2n+3\right)⋮d\)

     \(2n+4-2n-3⋮d\)

                 \(4-3⋮d\)

                     \(1⋮d\)\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(n+2;2n+3\right)=1\)

Vậy với mọi số tự nhiên n thì hai số n + 2 và 2n + 3 là hai số nguyên tố cùng nhau.

bindz
15 tháng 10 2023 lúc 21:37

Goi d la UCLN cua 2n+3 va 2+n

2n+3 chia het cho d

2+n chia hết cho d----> 2.(2+n)=4+2n chia het cho d

--> 4+2n-(2n+3) chia het cho d

--->4+2n-2n-3 chia het cho d

--> 1 chia het cho d

vay 2n+3 va n+2 la hai so nguyen to cung nhau

 


Các câu hỏi tương tự
Đỗ Ngọc Hà Giang
Xem chi tiết
Vũ Chí Kiên
Xem chi tiết
Dương Vũ
Xem chi tiết
Linh Ngoc Nguyen
Xem chi tiết
Nguyen Trang Mai Quyen
Xem chi tiết
nguyễn thị thùy dương
Xem chi tiết
Ngô Hoàng Thanh Hải
Xem chi tiết
Nguyễn Thu Trang
Xem chi tiết
Nguyễn Công Minh
Xem chi tiết