a) phần a sai đề rồi bạn à!!!!!!!!
b) áp dụng BĐT cô si ta có \(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}=2\)
bạn chuyển vế sang rồi qui đồng là ra thôi
a) phần a sai đề rồi bạn à!!!!!!!!
b) áp dụng BĐT cô si ta có \(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}=2\)
bạn chuyển vế sang rồi qui đồng là ra thôi
chứng tỏ rằng với mọi số thực a,b cùng dấu ta luôn có :
a) \(\frac{1}{a}<\frac{1}{b}\)
b) \(\frac{a}{b}+\frac{b}{a}\ge2\)
Bài 1:
Với a, b, c là các số thực dương, chứng minh rằng: \(\frac{1}{a\sqrt{3a+2b}}+\frac{1}{b\sqrt{3b+2c}}+\frac{1}{c\sqrt{3c+2a}}\ge\frac{3}{\sqrt{5abc}}\)
Bài 2:
Với x, y là các số thực dương, tìm giá trị nhỏ nhất của \(G=\sqrt{\frac{x^3}{x^3+8y^3}}+\sqrt{\frac{4y^3}{y^3+\left(x+y\right)^3}}\)
Bài 3:
Với a, b, c là các số thực dương, chứng minh rằng: \(\sqrt{\frac{a+b}{c}}+\sqrt{\frac{b+c}{a}}+\sqrt{\frac{c+a}{b}}\ge2\left(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}\right)\)
Bài 4:
Với a, b, c là các số thực dương thỏa mãn abc = 1, chứng minh rằng: \(\frac{a}{\sqrt{b^2+3}}+\frac{b}{\sqrt{c^2+3}}+\frac{c}{\sqrt{a^2+3}}\ge\frac{3}{2}\)
Ai nhanh và đúng, mình sẽ đánh dấu và thêm bạn bè nhé. Thanks. Làm ơn giúp mình !!! PLEASE!!!
Cho 3 số thực a,b,c khác 0 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\) .Chứng minh rằng trong 3 số a,b,c luôn có 2 số đối nhau ..
Từ đó suy ra với mọi n lẻ thì \(\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{a^n+b^n+c^n}\)
Cho a, b là 2 số cùng dấu
chứng minh \(\frac{a}{b}+\frac{b}{a}\ge2\)
cho 3 số thực a,b,c khác không thỏa mãn a+b+c khác 0 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\). Chứng minh rằng trong ba số a,b,c luôn có hai số đối nhau. Từ đó suy ra với mọi số nguyên n lẻ thì: \(\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{a^n+b^n+c^n}\) Mk đang cần gấp ai lm trước mk tích
chứng tỏ rằng với mọi số thực a,b bất kì ta luôn có
a) \(a^2+b^2\ge2ab\)
b) \(\frac{a^2+b^2}{2}>ab\)
Chứng minh rằng: \(\frac{1}{2}+\frac{a^2+b^2+c^2}{ab+bc+ca}\ge\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)với mọi số thực a,b,c
Chứng minh rằng:
\(\left(a-\frac{1}{b}\right)\left(b-\frac{1}{c}\right)\left(c-\frac{1}{a}\right)\ge\left(a-\frac{1}{a}\right)\left(b-\frac{1}{b}\right)\left(c-\frac{1}{c}\right)\) với mọi a, b, c là các số thực không nhỏ hơn 1
Cho \(a,b,c\)là các số thực dương thỏa mãn \(a+b+c=1\). Chứng minh rằng:
\(\frac{a+bc}{b+c}+\frac{b+ca}{c+a}+\frac{c+ab}{a+b}\ge2\)