Gọi 2 số nghịch đảo nhau là a/b và b/a (a,b > 0)
Theo đề bài ta cần chứng minh a/b +b/a lớn hơn hoặc bằng 2
Không mất tính tổng quát, giả sử a lớn hơn hoặc bằng b, suy ra a = b + m (m lớn hơn hoặc bằng 0)
Ta có: a/b + b/a = (b+m)/b + b/(b+m) = 1 + m/b + b/(b+m)
\(\frac{a}{b}+\frac{b}{a}=\frac{b+m}{b}+\frac{b}{b+m}=1+\frac{m}{b}+\frac{b}{b+m}\)
\(\ge1+\frac{m}{b+m}+\frac{b}{b+m}=1+\frac{m+b}{b+m}=1+1=2\)
Vậy a/b + b/a lớn hơn hoặc bằng 2 (điều phải chứng minh)
Bạn ghép hai câu trả lời vào nhé, mình bấm nhầm nút gửi.