Xét các tia x'ox và y'oy, có hai góc đối đỉnh là xoy và x'oy'
gọi ot và ot' là hai tia phân giác tương ứng
Thấy: góc xoy = góc x'oy'
=> góc yot = góc y'ot'
Ta có: góc xoy + góc xoy' = góc toy' + góc yot = 180o
<=> góc toy' + góc y'ot' = góc tot' = 180o
=> ot và ot' là hai tia đối nhau.
* Gọi góc xOz, góc zOy là 2 góc kề bù ; và tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy.
* Để chứng minh 2 tia phân giác của 2 góc kề bù vuông góc với nhau, ta sẽ chứng minh tia Ou vuông góc tia Ov.
* Vì tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy
nên:
{ góc uOz = 1/2 góc xOz
{ góc zOv = 1/2 góc zOy
Suy ra:
{ 2 góc uOz = góc xOz
{ 2 góc zOv = góc zOy
Ta lại có:
góc xOz + góc zOy = 180 độ (vì 2 góc xOz, góc zOy kề bù)
=> 2 góc uOz + 2 góc zOv = 180 độ
=> 2(góc uOz + góc zOv) = 180 độ
=> góc uOz + góc zOv = 90 độ
=> góc uOv = 90 độ (vì 2 góc uOz, góc zOv kề nhau)
=> Tia Ou vuông góc Tia Ov
Do đó, 2 tia phân giác của 2 góc kề bù thì vuông góc với nhau.
Góc kề bù là hình gồm 2 tia đối nhau
Và có tổng số đo là : 180 độ, có 1 cạnh chung
Vì tia phân giác là tia nằm giữa 2 tia còn lại và chia góc đó làm 2 phần bằng nhau
Tia phân giác của góc kề bù có số đo là:
180 : 2 = 90 độ
Vì góc có số đo là 90 độ là góc vuông
=> Tia phân giác của 2 góc kề bù vuông góc với nhau ( đpcm )
Xét các tia x'ox và y'oy, có hai góc đối đỉnh là xoy và x'oy'
gọi ot và ot' là hai tia phân giác tương ứng
Thấy: góc xoy = góc x'oy'
=> góc yot = góc y'ot'
Ta có: góc xoy + góc xoy' = góc toy' + góc yot = 180o
<=> góc toy' + góc y'ot' = góc tot' = 180o
=> ot và ot' là hai tia đối nhau.
Ta có:
\(\frac{1}{2}=mOy=xOy\left(gt\right)\)
\(yOn=\frac{1}{2}yOz\left(gt\right)\)
Nếu theo lý luạn Oy nằm giữa Om,On nên
\(mOn=mOy+yOn\)
\(\frac{1}{2}xOy+\frac{1}{2}xOm=\frac{1}{2}\left(xOy+yOz\right)\)
Kết luạn:
Cmr:
\(\frac{1}{2}.180=90=Om>On\)
~Study well~ :)
Theo mk cách này dễ hỉu hơn nhưng vẫn lằng nhằng hơn mấy cách bn kia :)