Chứng tỏ rằng:
a)\(\frac{3}{5.2!}+\frac{3}{5.3!}+\frac{3}{5.4!}+...+\frac{3}{5.100!}< \frac{3}{5}\)
b) \(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+..+\frac{1}{100!}< 1\)
P/S: dấu ! nghĩa là dấu dư thừa. Vd: n! = 1x2x3x.......x n
\(\frac{3}{5.2!}\)+ \(\frac{3}{5.3!}\)+ \(\frac{3}{5.4!}\)+....................+ \(\frac{3}{5.100!}\)
Cho A=\(\frac{3}{5.2!}+\frac{3}{5.3!}+...+\frac{3}{5.100!}\)
C/m A<0.6
S=\(\frac{3}{5.2!}+\frac{3}{5.3!}+...+\frac{3}{5.100!}\) có là số nguyên hay không vì sao
chứng tỏ rằng :
3/5.2! + 3/5.3! +3/5.4! +....+5/1000! < 0,6
CMR: \(\frac{4}{5.2!}+\frac{4}{5.3!}+\frac{4}{5.4!}+\frac{4}{5.5!}+...+\frac{4}{5.n!}< 0,8\),8( dấu chấm là dấu nhân và n!=1.2.3.4.5....(n-1).n)
CMR với n E N* thì ta có
\(\frac{4}{5.2!}+\frac{4}{5.3!}+\frac{4}{5.4!}+...+\frac{4}{5.n!}<\frac{4}{5}\)
Đứa nào ko biết đừng có trả lời, cấm trả lời cái kiểu mình mới học lớp 5, sorry
Tính:
a) \(\frac{5.4^{15}.9^9-4.3^{20}.8^9}{5.2^9.6^{19}-7.2^{29}.27^6}\)
b) \(\frac{0,125-\frac{1}{5}+\frac{1}{7}}{0,375-\frac{3}{5}+\frac{3}{7}}+\frac{\frac{1}{2}+\frac{1}{3}-0,2}{\frac{3}{4}+0,5-\frac{3}{10}}\)
Ghi rõ cách lm
a, \(\frac{5.4^{15}.9^9-4.3^{20}.8^9}{5.2^9.6^{19}-7.2^{29}.27^6}\)
b,\(\frac{0,125-\frac{1}{5}+\frac{1}{7}}{0,375-\frac{3}{5}+\frac{3}{7}}+\frac{\frac{1}{2}+\frac{1}{3}-0,2}{\frac{3}{4}+0,5-\frac{3}{10}}\)
c,\(\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+....+\frac{2}{97.100}\)