Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Angel of the eternal lig...

Chứng tỏ rằng \(\frac{12n+1}{30n+2}\)là phân số tối giản 

tth_new
10 tháng 9 2017 lúc 20:05

Ta có:\(\frac{12n+1}{30n+2}\)

\(\Leftrightarrow\frac{12.n+1}{30.n+2}=\frac{12+1.n}{30+2.n}=\frac{13.n}{32.n}\)

\(\Rightarrow\frac{12n+1}{30n+2}\)tối giản vì \(\frac{13.n}{32.n}=\frac{13}{32}.n\)

\(\frac{13}{32}\) là phân số tối giản nên \(\frac{13}{32}.n\)là tối giản.

\(\Rightarrow\frac{13.n}{32.n}=\frac{12n+1}{30n+2}=\)Phân số tối giản

Đs:

An Nhiên
10 tháng 9 2017 lúc 16:37

Gọi d là ƯCLN(12n + 1; 30n + 2) Nên ta có :

\(12n+1⋮d\)và \(30n+2⋮d\)

\(\Leftrightarrow5\left(12n+1\right)⋮d\)và \(2\left(30n+2\right)⋮d\)

\(\Leftrightarrow60n+5⋮d\)và  \(60n+4⋮d\)

\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vì d = 1 \(\Rightarrow\frac{12n+1}{30n+2}\) là phân số tối giản (đpcm)


Các câu hỏi tương tự
Chocolate friendship
Xem chi tiết
Phan Tùng Dương
Xem chi tiết
Vũ Thành Phong
Xem chi tiết
Pham Hoang Giang
Xem chi tiết
Phuong Nguyen
Xem chi tiết
Lê Mỹ Hảo
Xem chi tiết
Đặng Thủy Tiên
Xem chi tiết
kakashi
Xem chi tiết
Thân Phan Hà Anh
Xem chi tiết