Đặt : \(A=5+5^2+5^3+...+5^{30}\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{29}+5^{30}\right)\)
\(=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{29}\left(1+5\right)\)
\(=\left(1+5\right)\left(5+5^3+...+5^{29}\right)\)
\(=6\left(5+5^3+...+5^{29}\right)⋮6\) (đpcm)
Bài giải
\(5+5^2+5^3+5^4+...+5^{29}+5^{30}\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{29}+5^{30}\right)\)
\(=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{29}\left(1+5\right)\)
\(=5\cdot6+5^3\cdot6+...+5^{29}\cdot6\)
\(=6\left(5+5^3+...+5^{29}\right)\text{ }⋮\text{ }6\)
\(\Rightarrow\text{ ĐPCM}\)