Ta có :
\(3^1+3^2+3^3+3^4+...+3^{99}+3^{100}\)
\(=(3^1+3^2)+(3^3+3^4)+...+(3^{99}+3^{100})\)
\(=3(1+3)+3^3(1+3)+...+3^{99}(1+3)\)
\(=3.4+3^3.4+...+3^{99}.4\)
\(=4.(3+3^3+...+3^{99})\)chia hết cho 4
\(3+3^2+3^3+3^4+...+3^{99}+3^{100}.\)
\(=3\left(1+3\right)+3^2\left(1+3\right)+...+3^{99}\left(1+3\right)\)
\(=4\left(3+3^2+...+3^{99}\right)⋮4\)
Đặt \(A=3^1+3^2+3^3+...+3^{100}\)
\(=\left(3^1+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{99}+3^{100}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{99}\left(1+3\right)\)
\(=4\left(3+3^3+...+3^{99}\right)⋮4^{\left(đpcm\right)}\)
\(3^1+3^2+3^3+....+3^{99}+3^{100}\)
\(=\left(1+3\right)+\left(3^2+3^3\right)+.....+\left(3^{99}+3^{100}\right)\)
\(=\left(1+3\right)+3^2\left(1+3\right)+...+3^{99}\left(1+3\right)\)
\(=4+3^2.4+....+3^{99}.4\)
\(=4.\left(1+3^2+....+3^{99}\right)⋮4\)
\(3^1+3^2+3^3+3^4+...+3^{99}+3^{100}\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{99}\left(1+3\right)\)
\(=3.4+3^3.4+...+3^{99}.4⋮4\)