Ta có 17x+17y chia hết cho 17
9x+5y chia hết cho 17
=> 17x+17y-9x-5y=8x+12y=4(2x+3y) chia hết cho 17 => 2x+3y chia hết cho 17
Giả sử: \(9x+5y⋮17\)
\(\Rightarrow3\left(9x+5y\right)⋮17\)
\(\Rightarrow27x+15y⋮17\)
\(\Rightarrow\left(17x+10x+15y\right)⋮17\)
\(Vì\) \(17x⋮17\) nên \(\left(10x+15y\right)⋮17\)
\(\Rightarrow2x+3y⋮17\) \(chỉ\)\(khi\) \(\left(9x+5y\right)⋮17\left(dieu1\right)\)
Giả sử: \(2x+3y⋮17\)
\(\Rightarrow5\left(2x+3y\right)⋮17\)
\(\Rightarrow\left(10x+15y\right)⋮17\)
\(\Rightarrow\left(17x+10x+15y\right)⋮17\)
\(\Rightarrow\left(27x+15y\right)⋮17\)
\(\Rightarrow3\left(9x+5y\right)⋮17\)
\(Mà\) \(3\) không chia hết cho 17 \(\Rightarrow9x+5y⋮17\) (điều 2)
Từ điều 1 và điều 2 \(\Rightarrow2x+3y⋮17\Leftrightarrow9x+5y⋮17\)
Vậy \(2x+3y⋮17\Leftrightarrow9x+5y⋮17\)
Mình thêm giữa dòng 5 và 6 là:
\(\Rightarrow5\left(2x+5y\right)⋮17\)
Mà \(5\) không chia hết cho 17 \(\Rightarrow\left(2x+3y\right)⋮17\)