\(2^1+2^2+2^3+...+2^{100}\)
\(=\)\(2.\left(1+2\right)+2^3.\left(1+2\right)+...+2^{99}.\left(1+2\right)\)
\(=\)\(2.3+2^3.3+...+2^{99}.3\)
\(=\)\(3.\left(2+2^3+...+2^{99}\right)\)
\(=\)\(2^1+2^2+2^3+...+2^{100}⋮3\left(đpcm\right)\)
\(2^1+2^2+2^3+...+2^{100}\)
\(=\)\(2.\left(1+2\right)+2^3.\left(1+2\right)+...+2^{99}.\left(1+2\right)\)
\(=\)\(2.3+2^3.3+...+2^{99}.3\)
\(=\)\(3.\left(2+2^3+...+2^{99}\right)\)
\(=\)\(2^1+2^2+2^3+...+2^{100}⋮3\left(đpcm\right)\)
chứng tỏ rằng tổng 2^1+2^2+....+2^100 chia hết cho 3 ?
chứng minh
A = 1+3+3^2+3^3+...3^11 chứng tỏ rằng chia hết cho 13
B = 3+4+2^2+2^3+....+2^30 chứng tỏ rằng chia hết cho 11
C = 3^1000-1 chứng tỏ rằng chia hết cho 4
bài 3:cho M = 2 + 2^2 + 2^3 + ... +2^100
a,chứng tỏ rằng M chia hết cho 2
b,chứng tỏ rằng M chia hết cho 3
c,chứng tỏ rằng M chia hết cho 15
d,tìm chữ số tận cùng của M
e,tính M
cần gấppppppppppppppppppppp
1)chứng tỏ rằng tích n(n+1)(n+5) là một số chia hết cho 3 với mọi số tự nhiên n
2)Tìm số dư khi chia tổng 2^1+2^2+2^3+2^4+...+2^99+2^100 cho 7
3)Chứng tỏ rằng số có dạng abcabc chia hết cho 7:11:13
chứng tỏ rằng
1] 1+ 4+4^2+4^3+...+4^2012 chia hết cho 21
2] 1+7+7^2+7^3+...7^101 chia hết cho 8
3] 2+2^2+2^3+...+2^100 chia hết cho 31 và 5
Chứng tỏ rằng: 1+2+3+4+...+70000 chia hết cho 100
cho B= 3^1 + 3^2 + 3^3 + ....+ 3^100. chứng tỏ rằng B chia hết cho 12
chứng tỏ rằng :21+22+23+.....+2100 chia hết cho 3
Chứng tỏ rằng
B = 2^2 + 2^3 + ..............+ 2^100 vừa chia hết cho 31 vừa chia hết cho 5