Bài giải
Ta có :
\(1+3+3^2+3^3+3^4+...+3^9\)
\(=\left(1+3\right)+\left(3^2+3^3\right)+\left(3^4+3^5\right)+...+\left(3^{98}+3^{99}\right)\)
\(=4+3^2\left(1+3\right)+3^4\left(1+3\right)+...+3^{98}\left(1+3\right)\)
\(=4+3^2\cdot4+3^4\cdot4+...+3^{98}\cdot4\)\(⋮\text{ }4\)
\(\Rightarrow\text{ ĐPCM}\)
Bài giải
\(1+3+3^2+3^3+3^4+...+3^9\)
\(=\left(1+3\right)+\left(3^2+3^3\right)+\left(3^4+3^5\right)+...+\left(3^{98}+3^{99}\right)\)
\(=4+3^2\left(1+3\right)+3^4\left(1+3\right)+...+3^{98}\left(1+3\right)\)
\(=4+3^2\cdot4+3^4\cdot4+...+3^{98}\cdot4\)\(⋮\text{ }4\)
\(\Rightarrow\text{ ĐPCM}\)
\(\frac{7}{1\cdot5}+\frac{7}{5\cdot9}+\frac{7}{9\cdot13}+\frac{7}{13\cdot17}+\frac{7}{17\cdot21}\)
\(=\frac{7}{4}\left(\frac{4}{1\cdot5}+\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}+\frac{4}{17\cdot21}\right)\)
\(=\frac{7}{4}\left(\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+\frac{1}{17}-\frac{1}{21}\right)\)
\(=\frac{7}{4}\left(1-\frac{1}{21}\right)\)
\(=\frac{7}{4}\cdot\frac{20}{21}\)
\(=\frac{35}{21}\)