1/2^2<1/(1.2)
1/3^2<1/(2.3)
...
1/2010^2<1/(2009.2010)
=>1/2^2+1/3^2+...+1/2010^2<1/(1.2)+1/(2.3)+...+1/(2009.2010)
=>1/2^2+1/3^2+...+1/2010^2<1-1/2+1/2-1/3+...+1/2009-2010
=>1/2^2+1/3^2+...+1/2010^2<1-1/2010
=>=>1/2^2+1/3^2+...+1/2010^2<1(đpcm)
1/2^2<1/(1.2)
1/3^2<1/(2.3)
...
1/2010^2<1/(2009.2010)
=>1/2^2+1/3^2+...+1/2010^2<1/(1.2)+1/(2.3)+...+1/(2009.2010)
=>1/2^2+1/3^2+...+1/2010^2<1-1/2+1/2-1/3+...+1/2009-2010
=>1/2^2+1/3^2+...+1/2010^2<1-1/2010
=>=>1/2^2+1/3^2+...+1/2010^2<1(đpcm)
a) Cho P = 1 + 3 + 32 + 33 +.......+ 3101. Chứng tỏ rằng P⋮13.
b) Cho B = 1 + 22 + 24 +.......+ 22020. Chứng tỏ rằng B ⋮ 21.
c) Cho A = 2 + 22 + 23 +........+ 220. Chứng tỏ A chia hết cho 5.
d) Cho A = 1 + 4 + 42 + 43 +..........+ 498. Chứng tỏ A chia hết cho 21.
e) Cho A = 119 + 118 + 117 +.........+ 11 + 1. Chứng tỏ A chia hết cho 5.
a.Chứng tỏ rằng B = 1/22 + 1/32 + 1/42 + 1/52 + 1/62 + 1/72 +1/82 < 1
b.Cho S = 3/1.4 + 3/4.7 + 3/7.10 +......+3/40.43 + 3/43.46 hãy chứng tỏ rằng S < 1
Chứng tỏ:
D= 1/22 +1/32 +1/42 +....1/102 <1
Chứng tỏ:1 phần 22 +1 phần 32 +1 phần 42+...+1 phần 102<1
chứng mỉnh rằng 1/22 +1/32 +1/42 + ...+ 1/92 <8/9
Chứng minh rằng: M = 1/22 + 1/32 + 1/42 + ... + 1/n2 < 1
Câu 1: Chứng minh rằng 2 + 1/2 +1/3 + 1/4 +...+ 1/67 > 5
Câu 2: Cho B = 1/22 +1/32 +...+ 1/902
Chứng minh 42/91 < B < 1
Câu 1: Chứng minh rằng 2 + 1/2 + 1/3 + 1/4 +...+ 1/67 > 5
Câu 2: Cho B = 1/22 + 1/32 +... + 1/902
Chứng minh: 42/91 < B < 1
hãy chứng minh: 1/22+1/32+1/42+...+1/20212+1/20222<1
Hãy chứng tỏ rằng:
a) 1/41+1/42+1/43+...+1/79+1/80>7/12
b)11/15<1/21+1/22+1/23+...+1/59+1/60<3/2