Đặt: A=1/12+1/22+1/32+…+1/n2
Ta thấy: 1/12>1/1.2
1/22>1/2.3
.…………
1/n2>1/n.(n+1)
=>A>1/1.2+1/2.3+…+1/n.(n+1)=1-1/2+1/2-1/3+…+1/n-1/(n+1)
=>A>1-1/(n+1)>1-(n+1)/(n+1)=1-1=0
=>A>0
Ta thấy: 1/22<1/1.2
1/32<1/2.3
.…………
1/n2<1/(n-1).n
=>A<1/12+1/1.2+1/2.3+…+1/(n-1).n=1/12+1-1/2+1/2-1/3+…+1/(n-1)-1/
=>A<1+1-1/(n-1)=2-1/(n-1)<2-(n-1)/(n-1)=2-1=1
=>A<1
=>0<A<1
mà 0 và 1 là 2 số tự nhiên liên tiếp
=>A không phải số tự nhiên.
=>ĐPCM