1 . \(\frac{a}{-b}\) = \(\frac{-a}{b}\) vì a.b = -a.(-b)
2. tương tự
1 . \(\frac{a}{-b}\) = \(\frac{-a}{b}\) vì a.b = -a.(-b)
2. tương tự
\(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+\frac{4}{5}+\frac{5}{6}< 4\)4 (Chứng tỏ)
\(\frac{a}{a+b+c}+\frac{b}{b+c+a}+\frac{c}{c+d+a}+\frac{d}{d+a+b}\)
(Chứng tỏ)
\(\frac{3}{8}\) viết 2 phân số thành tổng 2 phân số có tử là 1
Cho A = \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{63}\)
a. Chứng tỏ A > 2.
b. Chứng tỏ a không phải là số tự nhiên.
Chứng tỏ:
\(\frac{a}{a+b+c}+\frac{b}{b+c+a}+\frac{c}{c+d+a}+\frac{d}{d+b+a}>1\)
a)\(\frac{7}{x}<\frac{x}{4}<\frac{10}{x}\)
b) Cho A=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}\). Chứng tỏ: \(\frac{8}{9}>A>\frac{2}{5}\)
Cho số nguyên dương a, b, c, d
Chứng tỏ rằng: \(1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\)
Chứng tỏ : \(a^2+b^2\ge2\cdot a\cdot b\)
Áp dụng : chứng minh:
\(S=\frac{a+b}{c}+\frac{a+c}{b}+\frac{b+c}{a}\ge6\)
cho a,b,c thuộc N*và a<b
hãy chứng tỏ\(\frac{a}{b}< \frac{a+c}{b+c}\)và \(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)
CHỨNG TỎ : 1<\(\frac{A}{A+B}\)+\(\frac{B}{B+C}\)+\(\frac{C}{C+A}\)<2
Bài 1 :Tổng \(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\)\(\frac{1}{10}\)bằng phân số \(\frac{a}{b}\).Chứng tỏ rằng a chia hết cho 13
Bài 2 : Cho phân số tối giản \(\frac{a}{b}\)và\(\frac{a'}{b'}\)\(\left(a,b,a',b'\in Nsao\right)\)có tổng là một số tự nhiên n .Chứng tỏ rằng \(b=b'\)