Gọi d là (30n+2 ; 12n+1) (1)
=> 30n+2 chia hết cho d
=> 2(30n+2) chia hết cho d
hay 60n+4 chia hết cho d
Tương tự ta chứng minh được 5(12n+1) chia hết cho d
=> 60n+5 chia hết cho d do đó (60n+5) - (60n+4) chia hết cho d
hay 1 chia hết cho d =>
d=1 hoặc -1 (2) Từ (1) và (2)
=> (30n+2 ; 12n+1) = 1 hoặc -1 do đó phân số 12n+1 trên 30n+2 là phân số tối giản (Đ.P.C.M)
b. Gọi d là ƯCLN của 14n+17 và 21n+25
Ta có: * 14n+17 chia hết cho d
=> 3 (14n+17) chia hết cho d
> 42n+51 chia hết cho d *
21 +25 chia hết cho d =>
2 (21n+25) chia hết cho d
=> 42n+50 chia hết cho d
Ta lại có: 42n+51 - (42n+50) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> B là phân số tối giản
Gọi d là (30n+2 ; 12n+1) (1)
=> 30n+2 chia hết cho d
=> 2(30n+2) chia hết cho d
hay 60n+4 chia hết cho d
Tương tự ta chứng minh được 5(12n+1) chia hết cho d
=> 60n+5 chia hết cho d do đó (60n+5) - (60n+4) chia hết cho d
hay 1 chia hết cho d =>
d=1 hoặc -1 (2) Từ (1) và (2)
=> (30n+2 ; 12n+1) = 1 hoặc -1 do đó phân số 12n+1 trên 30n+2 là phân số tối giản (Đ.P.C.M)
b. Gọi d là ƯCLN của 14n+17 và 21n+25
Ta có: * 14n+17 chia hết cho d
=> 3 (14n+17) chia hết cho d
> 42n+51 chia hết cho d *
21 +25 chia hết cho d =>
2 (21n+25) chia hết cho d
=> 42n+50 chia hết cho d
Ta lại có: 42n+51 - (42n+50) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> B là phân số tối giản