\(A=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{118}+2^{119}\right)\\ A=\left(1+2\right)\left(1+2^2+...+2^{118}\right)=3\left(1+2^2+...+2^{118}\right)⋮3\\ A=\left(1+2+2^2\right)+...+\left(2^{117}+2^{118}+2^{119}\right)\\ A=\left(1+2+2^2\right)\left(1+...+2^{117}\right)=7\left(1+...+2^{117}\right)⋮7\\ A=\left(1+2+2^2+2^3+2^4\right)+...+\left(2^{115}+2^{116}+2^{117}+2^{118}+2^{119}\right)\\ A=\left(1+2+2^2+2^3+2^4\right)\left(1+...+2^{115}\right)=31\left(1+...+2^{115}\right)⋮31\)