Ta có: \(\frac{1}{2^2}=\frac{1}{4}\)
\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\)
................
\(\frac{1}{1009^2}< \frac{1}{1008.1009}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{1009^2}< \frac{1}{4}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1008.1009}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1009^2}< \frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1008}-\frac{1}{1009}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1009^2}< \frac{1}{4}+\frac{1}{2}-\frac{1}{1009}=\frac{3}{4}-\frac{1}{1009}< \frac{3}{4}\)(đpcm)