ta có \(\frac{1}{20}>\frac{1}{27};\frac{1}{21}>\frac{1}{27}...;\frac{1}{26}>\frac{1}{27}\)
=> \(\frac{1}{20}+\frac{1}{21}+...+\frac{1}{27}>\frac{7}{27}+\frac{1}{27}=\frac{8}{27}\)(ĐPcm)
Ta có : \(\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+...+\frac{1}{27}\)(8 số hạng)
\(>\frac{1}{27}+\frac{1}{27}+\frac{1}{27}+...+\frac{1}{27}\)(8 số hạng)
\(=\frac{1}{27}\times8\)
\(=\frac{8}{27}\)
\(\Rightarrow\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+...+\frac{1}{27}>\frac{8}{27}\left(đpcm\right)\)
Vì \(\frac{1}{20}< \frac{1}{27};\frac{1}{21}< \frac{1}{27};...;\frac{1}{26}< \frac{1}{27}\)
\(\frac{\Rightarrow1}{20}+\frac{1}{21}+...+\frac{1}{27}>\frac{7}{27}+\frac{1}{27}=\frac{8}{27}\left(ĐPCM\right)\)
Bài giải
Ta có : \(\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+...+\frac{1}{27}>\frac{1}{27}+\frac{1}{27}+\frac{1}{27}+...+\frac{1}{27}=\frac{8}{27}\)
\(\Rightarrow\text{ ĐPCM}\)
Bài giải
Ta có : \(\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+...+\frac{1}{27}>\frac{1}{27}+\frac{1}{27}+\frac{1}{27}+...+\frac{1}{27}=\frac{8}{27}\)
\(\Rightarrow\text{ ĐPCM}\)
Giải
Ta có : \(\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+...+\frac{1}{27}>\frac{1}{27}+\frac{1}{27}+\frac{1}{27}+...+\frac{1}{27}=\frac{8}{27}\)
\(\Rightarrowđpcm\)
Hc tốt