Ta có:VT=(ab+cd)2+(ac+bd)2=a2b2+2abcd+c2d2+a2c2-2abcd+b2d2=(a2b2+b2d2)+(c2d2+a2c2)=a2(b2+d2)+c2(b2+d2)=(b2+d2)(a2+c2)=VP(đpcm)
Ta có:VT=(ab+cd)2+(ac+bd)2=a2b2+2abcd+c2d2+a2c2-2abcd+b2d2=(a2b2+b2d2)+(c2d2+a2c2)=a2(b2+d2)+c2(b2+d2)=(b2+d2)(a2+c2)=VP(đpcm)
Chứng minh rằng :
b) \(a^3+b^3=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\)
c) \(\left(a^2+b^2\right)\left(c^2+d^2\right)=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
Chứng minh rằng:
\(\left(a^2+b^2\right).\left(c^2+d^2\right)=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
Cho a,b,c,d là các số thực. Chứng minh rằng:
\(\left(ac+bd\right)^2+\left(ad-bc\right)^2=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
Chứng minh bất dẳng thức Bunhiacôpxki:\(\left(ac+bd\right)^2\le\left(a^2+b^2\right)\left(c^2+d^2\right)\)
Chứng minh đẳng thức :
a) \(\left(a^2+b^2\right)\left(c^2+d^2\right)=\left(ac+bd\right)^2+\left(ad-bc\right)^2\))^2
b) \(\left(a+b+c\right)+a^2+b^2+c^2=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\)
( Mình đang cần gấp . Đảm bảo tick trả đầy đủ =))
Cho \(ab=cd\). Chứng minh \(\frac{\left(a+c\right)\left(a+d\right)\left(b+c\right)\left(b+d\right)}{\left(a+b+c+d\right)^2}=ab\)
cmr:
A)\(a^3+b^3=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\)
B)\(\left(a^2+b^2\right)\left(c^2+d^2\right)=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
cmr:
A)\(a^3+b^3=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\)
B)\(\left(a^2+b^2\right)\left(c^2+d^2\right)=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
Chứng minh rằng:
a) \(\left(a^2-b^2\right)\left(c^2-d^2\right)=\left(ac+bd\right)^2-\left(ad+bc\right)^2\)
b) Nếu \(x^2+y^2+z^2=xy+xz+yz\) thì x=y=z