\(\frac{sinx+\left(cosx-1\right)}{1-cosx}=\frac{2cosx}{sinx-\left(cosx-1\right)}\Rightarrow sin^2x-\left(cosx-1\right)^2=2cosx-2cos^2x\)
\(\Rightarrow sin^2x-cos^2x+2cosx-1=2cosx-2cos^2x\Rightarrow sin^2x+cos^2x-1=0\)
=>1-1=0 luôn đúng =>dpcm
\(\frac{sinx+\left(cosx-1\right)}{1-cosx}=\frac{2cosx}{sinx-\left(cosx-1\right)}\Rightarrow sin^2x-\left(cosx-1\right)^2=2cosx-2cos^2x\)
\(\Rightarrow sin^2x-cos^2x+2cosx-1=2cosx-2cos^2x\Rightarrow sin^2x+cos^2x-1=0\)
=>1-1=0 luôn đúng =>dpcm
tìm m để pt có nghiệm
a)\(m+1=\frac{cosx}{sinx+cosx+2}\)
b) \(m=\frac{msinx-1}{2cosx-sinx+4}\)
Cho x nhọn. CM các đẳng thức sau:
\(\frac{sinx+cosx-1}{1-cosx}\) = \(\frac{2.cosx}{sinx-cosx+1}\)
\(\frac{cosx}{sinx-cosx}\) + \(\frac{sinx}{sinx+cosx}\) = \(\frac{1+cot^2x}{1-cot^2x}\)
chứng minh: cosx/sinx-cosx + sinx/sinx+cosx=1+cot2x/1-cot2x
Cmr: \(\frac{sinx+cosx-1}{sinx-cosx+1}\)=\(\frac{cosx}{1+sinx}\)
Giải hộ mk vs!!!!
Aj tl nhanh nhất mk tik cho ^_^ ^_^ ^_^
chứng minh đẳng thức:
a) sinx / cosx + sinx - cosx / cosx - sinx = 1 + cot2a / 1 - cot2a
b) ( cosx + tanx / 1 + cosx.cotx)2 = cos2x + tan2x / 1 + cos2x. cot2x
chứng minh : cotx + sinx/(1+cosx) = 1/sinx
\(a.1+tan^2x=\frac{1}{cos^2x}\)
\(b.1+cot^2x=\frac{1}{sin^2x}\)
\(c.cot^2x-cos^2x=cot^2x.cos^2x\)
\(d.\frac{1+cosx}{sinx}=\frac{sinx}{1-cosx}\)
cho tgx=1/2
tính (cosx+sinx)/(cosx-sinx)=?
giả sử 3.sinx^4-cosx^4=1/2 thì sinx^4+3.cosx^4=
giúp mik vs