a) Ta có : \(x+y+\frac{2}{x}+\frac{2}{y}=\left(2x+\frac{2}{x}\right)+\left(2y+\frac{2}{y}\right)-\left(x+y\right)\)
Áp dụng bất đẳng thức Cauchy, ta có : \(2x+\frac{2}{x}\ge2\sqrt{2x.\frac{2}{x}}=4\) (1)
Tương tự : \(2y+\frac{2}{y}\ge2\sqrt{2y.\frac{2}{y}}=4\)(2) ; \(x+y\le2\Rightarrow-\left(x+y\right)\ge-2\)(3)
Cộng (1) , (2) , (3) theo vế được: \(\left(2x+\frac{2}{x}\right)+\left(2y+\frac{2}{y}\right)-\left(x+y\right)\ge4+4-2=6\)
Hay \(x+y+\frac{2}{x}+\frac{2}{y}\ge6\) (đpcm)
b) Áp dụng bất đẳng thức \(x^2+y^2+z^2\ge xy+yz+zx\) được :
\(a^8+b^8+c^8=\left(a^4\right)^2+\left(b^4\right)^2+\left(c^4\right)^2\ge\left(ab\right)^4+\left(bc\right)^4+\left(ca\right)^4\)
Tương tự : \(\left(a^2b^2\right)^2+\left(b^2c^2\right)^2+\left(c^2a^2\right)^2\ge a^2b^4c^2+b^2c^4a^2+c^2a^4b^2\)
\(\Rightarrow a^4+b^4+c^4\ge a^2b^2c^2\left(a^2+b^2+c^2\right)\)
\(\Rightarrow a^8+b^8+c^8\ge a^2b^2c^2\left(a^2+b^2+c^2\right)\)
\(\Rightarrow\frac{a^8+b^8+c^8}{a^3b^3c^3}\ge\frac{a^2b^2c^2\left(a^2+b^2+c^2\right)}{a^3b^3c^3}=\frac{a^2+b^2+c^2}{abc}\ge\frac{ab+bc+ac}{abc}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)