Ta có:
51n + 47102
= (...1) + 47100 . 472
= (...1) + (474)25 . (...9)
= (...1) + (...1)25 . (...9)
= (...1) + (...1) . (...9)
= (...1) + (...9)
= (...0) chia hết cho 10
=> đocm
\(^{51^n}\)luôn luôn có tận cùng bằng 1 (\(51^n\)=....1)
\(47^{102}\)=\(\left(47^4\right)^{25}\cdot47^2\)=......1 *....9=....9
=> \(51^n+47^{102}=.....1+.....9=.....0\)chia hết cho 10