ta có
(x-y)( x+y) = x^2 - xy + xy - y^2
= x^2 - y^2
x^2 + 2xy + y^2
= x^2 + xy + xy + y^2
= x(x+y) + y(x+y)
= (x+y)(x+y)
= (x+y)^2
\(\text{(x-y)(x+y)=(x-y)x+(x-y)y=xx-xy+yx-yy=xx-yy=x^2-y^2}\)
k cho mình nhé
\(\left(x-y\right)\left(x+y\right)\)
\(=x.\left(x+y\right)-y.\left(x+y\right)\)
\(=x^2+xy-\left(xy+y^2\right)\)
\(=x^2+xy-xy-y^2\)
\(=x^2-y^2\)