Ta có :
\(A=7+7^2+7^3+7^4+...+7^{4n}\)
\(A=\left(7+7^2+7^3+7^4\right)+...+\left(7^{4n-3}+7^{4n-2}+7^{4n-1}+7^{4n}\right)\)
\(A=7\left(1+7+49+343\right)+...+7^{4n-3}\left(1+7+49+343\right)\)
\(A=7.400+...+7^{4n-3}.400\)
\(A=400\left(7+...+7^{4n-3}\right)⋮400\)
Vậy \(A⋮400\)
Chúc bạn học tốt ~
ta nhóm 4 số thành 1 nhóm
A = \(\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)+....\left(7^{4n-3}+7^{4n-2}+7^{4n-1}+7^n\right)\) +\(7^n\))
A = \(\left(1+7+7^2+7^3\right).7+\left(1+7+7^2+7^3\right).7^5+...\left(1+7+7^2+7^3\right).7^{4n-3}\)
A = \(\left(1+7+7^2+7^3\right).\left(7+7^5+...+7^{4n-3}\right)\)
A = \(400.\left(7+7^5+...+7^{4n-3}\right)\)
=> A \(⋮\)400
Ở dòng đầu bạn bỏ \(7^n\)cuối cùng đi mà thay bằng \(7^{4n}\)
Ta có: \(A=7+7^2+7^3+7^4+...+7^{4n}\)
\(=\left(7+7^2+7^3+7^4\right)+...+\left(7^{4n-3}+7^{4n-2}+7^{4n-1}+7^{4n}\right)\)
\(=400.7+400.7^5+...+400.7^{n-3}\)
\(=400\left(7+7^5+...+7^{n-3}\right)\)
\(\Rightarrow\)\(A⋮400\)
Ta có :
\(A=7+7^2+7^3+7^4+...+7^{4n}\)
\(=\left(7+7^2+7^3+7^4\right)-...-\left(7^{4n-3}+7^{4n-2}+7^{4n-1}+7^{4n}\right)\)
\(=400.7+400.7^3+....+400.7^{n-3}=400\left(7+7^3+...+7^{n-3}\right)\)
\(\Rightarrow A⋮400\)