Ta có : \(\sqrt{a^2}+\sqrt{b^2}\ge\sqrt{\left(a+b\right)^2}\left(1\right)\Leftrightarrow\) \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) \(\Leftrightarrow\left(\left|a\right|+\left|b\right|\right)^2\ge\left(a+b\right)^2\Leftrightarrow a^2+b^2+2\left|a\right|.\left|b\right|\ge a^2+b^2+2ab\Leftrightarrow\left|a\right|.\left|b\right|\ge ab\)(luôn đúng)
Vậy (1) được chứng minh.