Biến đổi VT ta được :
\(VT=\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)\)
\(=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4\)
\(=x^4+\left(x^3y-x^3y\right)+\left(x^2y^2-x^2y^2\right)+\left(xy^3-xy^3\right)-y^4\)
\(=x^4-y^4=VP\) (đpcm)
Biến đổi VT ta được :
\(VT=\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)\)
\(=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4\)
\(=x^4+\left(x^3y-x^3y\right)+\left(x^2y^2-x^2y^2\right)+\left(xy^3-xy^3\right)-y^4\)
\(=x^4-y^4=VP\) (đpcm)
Chứng minh rằng \(\forall\) x, y, z thuộc \(ℤ\)thì giá trị của đa thức là một số chính phương,
a. \(A=\left(x+y\right)\cdot\left(x+2y\right)\cdot\left(x+3y\right)\cdot\left(x+4y\right)+y^4\)
b. \(B=\left(xy+yz+zx\right)^2+\left(x+y+z\right)^2\cdot\left(x^2+y^2+z^2\right)\)
Chứng minh rằng với mọi \(x,y\) ta luôn có
\(\left(x,y+1\right)\left(x^2y^2-xy+1\right)+\left(x^3-1\right)\left(1-y^3\right)=x^3+y^3\)
Nhanh lên ạ giúp mình zới :>
Rút gọn biểu thức
a. Q= \(\left(x-y\right)^2\)-4(x-y)(x+2y)+4\(\left(x+2y\right)^2\)
b. A=\(\left(xy+2\right)^3\)-6\(\left(xy+2\right)^2\)+12(xy+2)-8
c. \(\left(x+2\right)^3\)+\(\left(x-2\right)^3\)-2x(\(x^2\)+12)
Bài 3. Chứng minh các đẳng thức sau:
a. \(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)=x^5-y^5\)
b. \(\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)=x^5+y^5\)
c. \(\left(a+b\right)\left(a^3-a^2b+ab^2-b^3\right)=a^4-b^4\)
đ. \(\left(a+b\right)\left(a^2-ab+b^2\right)=a^3-b^3\)
Chứng minh các đẳng thức:
a)\(\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)=x^4-y^4\)
b)\(\left(a+b\right)^2-\left(a-b\right)^2=4ab\)
Chứng minh:
a) \(\left(x-1\right)\left(x^2+x+1\right)=x^3-1\)
b) \(\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)=x^4-y^4\)
Chứng minh rằng:\(2\left(x^4+y^4\right)\ge xy^3+x^3y+2x^2y^2\)
với mọi x,y
Chứng minh đẳng thức:
a) \(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)=x^5-y^5\)
chứng minh đẳng thức:
\(\left(x-y\right)\left(x^2+xy+y^2\right)-\left(x+y\right)\left(x^2-xy+y^2\right)=-2y^3\)