Chứng minh rằng giá trị của A luôn không âm với mọi x,y khác 0
\(A=\left(7x^5y^2-45x^4y^3\right):\left(3x^3-y^2\right)-\left(\frac{5}{2}x^2y^4-2xy^5\right):\frac{1}{2}xy^3\)
Giups mik giải bài này nhanh nha
\(\frac{\left(x-y\right)^2+xy}{\left(x+y\right)^2-xy}\)\(\left[1\frac{x^5+y^5+x^3y^2+x^2y^3}{\left(x^3-y^3\right)\left(x^3+y^3+x^2y+xy^2\right)}\right]\)
chứng minh các biểu thức sau không phụ thuộc vào biến :
a) \(\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\)
b) \(\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)-\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)-27\left(2y^3-1\right)\)
c) \(\left(x-1\right)^3-\left(x+4\right)\left(x^2-4x+16\right)+3x\left(8-1\right)\)
d ) \(\left(x+y+z\right)^2+\left(x-y\right)^2-\left(x-z\right)^2+\left(y-z\right)^2-3\left(x^2+y^2+z^2\right)\)
CÁC BẠN GIÚP MÌNH VỚI
các anh chị cộng tác viên ơi giúp em với
Chứng minh:
a) \(\left(x-1\right)\left(x^2+x+1\right)=x^3-1\)
b) \(\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)=x^4-y^4\)
rút gọn
1, \(\left(x+1\right)^3-x^3+3x^2-3x-1\)
2, \(\left(1+x\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\)
3, \(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)\)
các bạn giúp mk vs ạ
Rút gọn rồi tính giá trị của biểu thức khi x=1;y=\(-3\frac{1}{4}\)
\(\frac{\left(x-y\right)^2+xy}{\left(x+y\right)^2-xy}\)\(\left[1:\frac{x^5+y^5+x^3y^2+x^2y^3}{\left(x^3y^3\right)\left(x^3+y^3+x^2y+xy^2\right)}\right]\)
Chứng minh rằng với mọi số nguyên x và y thì :
\(\left(1+x^2\right)\left(1+y^2\right)+4xy+2\left(x+y\right)\left(1+xy\right)\)là số chính phương
CMR: giá trị biểu thức A luôn không âm với mọi x,y khác 0
\(A=\left(75x^5y^2-45x^4y^3\right):\left(3x^3-y^2\right)-\left(\frac{5}{2}x^2y^4-2xy^5\right):\frac{1}{2}xy^3\)
Rút gọn biểu thức:
a) \(A=\left(x-y\right)^3+\left(y+x\right)^3+\left(y-x\right)^3-3xy\left(x+y\right)\)
b) \(B=3x^2\left(x+1\right)\left(x-1\right)-\left(x^2-1\right)\left(x^4+x^2+1\right)+\left(x^2-1\right)^3\)
c) \(C=\left(x+y\right)\left(x^2-xy+y^2\right)+\left(x-y\right)\left(x^2+xy+y^2\right)-2x^3\)
d) \(D=\left(x+1\right)^3+\left(x-1\right)^3+x^3-3x\left(x+1\right)\left(x-1\right)\)